乙醇 Ethanol CAS号:64-17-5
产品名称:乙醇 Ethanol CAS号:64-17-5
产品描述:
产品名称:乙醇
英文名称:Ethanol
CAS号:64-17-5
MDL号:MFCD00003568
EINECS号:200-578-6
RTECS号:KQ6300000
BRN号:1718733
PubChem号:24872843
物性数据
1.性状:无色液体,有酒香。[1]
2.熔点(℃):-114.1[2]
3.沸点(℃):78.3[3]
4.相对密度(水=1):0.79(20℃)[4]
5.相对蒸气密度(空气=1):1.59[5]
6.饱和蒸气压(kPa):5.8(20℃)[6]
7.燃烧热(kJ/mol):-1365.5[7]
8.临界温度(℃):243.1[8]
9.临界压力(MPa):6.38[9]
10.辛醇/水分配系数:0.32[10]
11.闪点(℃):13(CC);17(OC)[11]
12.引燃温度(℃):363[12]
13.上限(%):19.0[13]
14.下限(%):3.3[14]
15.溶解性:与水混溶,可混溶于乙醚、氯仿、甘油、甲醇等多数有机溶剂。[15]
16.黏度(mPa·s,15ºC):0.6405
17.黏度(mPa·s,20ºC):0.5945
18.黏度(mPa·s,25ºC):0.5525
19.黏度(mPa·s,30ºC):0.5142
20.闪点(ºC,开口):16.0
21.闪点(ºC,闭口):14.0
22.蒸发热(KJ/mol,b.p.):38.95
23.熔化热(KJ/kg):104.7
24.生成热(KJ/mol,液体):-277.8
25.比热容(KJ/(kg·K),20ºC,定压):2.42
26.沸点上升常数:1.03~1.09
27.电导率(S/m):1.35×10-19
28.热导率(W/(m·K)):18.00
29.体膨胀系数(K-1,20ºC):0.00108
30.临界密度(g·cm-3):0.275
31.临界体积(cm3·mol-1):168
32.临界压缩因子:0.241
33.偏心因子:0.637
34.Lennard-Jones参数(A):4.5564
35.Lennard-Jones参数(K):424.51
36.溶度参数(J·cm-3)0.5:26.421
37.van der Waals面积(cm2·mol-1):4.930×109
38.van der Waals体积(cm3·mol-1):31.940
39.气相标准燃烧热(焓)(kJ·mol-1):1410.01
40.气相标准声称热(焓)( kJ·mol-1) :-234.01
41.气相标准熵(J·mol-1·K-1) :280.64
42.气相标准生成自由能( kJ·mol-1):-166.7
43.气相标准热熔(J·mol-1·K-1):65.21
44.液相标准燃烧热(焓)(kJ·mol-1):-1367.54
45.液相标准声称热(焓)( kJ·mol-1):-276.98
46.液相标准熵(J·mol-1·K-1) :161.04
47.液相标准生成自由能( kJ·mol-1):-174.18
48.液相标准热熔(J·mol-1·K-1):112.6
49.
毒理学数据
1.急性毒性[16]
LD50:7060mg/kg(大鼠经口);7060mg/kg(兔经口);7430mg/kg(兔经皮)
LC50:20000ppm(大鼠吸入,10h)
2.刺激性[17]
家兔经皮:20mg(24h),中度刺激。
家兔经验:500mg,重度刺激。
3.亚急性与慢性毒性[18] 大鼠经口10.2g/(kg·d),12周,体重下降,脂肪肝。
4.致突变性[19] 微生物致突变:鼠伤寒沙门菌11%。显性致死试验:小鼠经口1~1.5g/kg(每天,2周)阳性。细胞遗传学分析:人淋巴细胞2.5%(24h)。姐妹染色单体交换:人淋巴细胞500ppm(72h)。DNA抑制:人淋巴细胞220mmol/L。微核试验:狗淋巴细胞,400μmol/L。
5.致畸性[20] 猴孕后2~17周经口给予低中毒剂量(TDLo)32400mg/kg,致中枢神经系统和颅面部(包括鼻、舌)发育畸形。大鼠、小鼠、豚鼠、家畜孕后不同时间经口、静脉内、腹腔内途径给予不同剂量,致中枢神经系统、泌尿生殖系统、内分泌系统、肝胆管系统、呼吸系统、颅面部(包括鼻、舌)、眼、耳发育畸形。雄性大鼠交配前30d经口给予240g/kg,致泌尿生殖系统发育畸形。
6.致*性[21] IARC致*性评论:对动物致*性证据有限。
7.其他[22] 小鼠腹腔低中毒剂量(TDLo):7.5g/kg(孕9d),致畸阳性。
生态学数据
1.生态毒性[23]
LC50:13g/L(96h)(虹鳟鱼,静态);14.2~15.3g/L(96h)(黑头呆鱼);9268~14221mg/L(48h)(水蚤,静态)
IC50:1450mg/L(72h)(藻类)
2.生物降解性[24]
好氧生物降解性(h):6.5~26
厌氧生物降解性(h):26~104
3.非生物降解性[25]
水中光氧化半衰期(h):8020~3.20×105
空气中光氧化半衰期(h):12.2~122
分子结构数据
1、摩尔折射率:12.84
2、摩尔体积(cm3/mol):59.0
3、等张比容(90.2K):128.4
4、表面张力(dyne/cm):22.3
5、极化率(10-24cm3):5.09
计算化学数据
1.疏水参数计算参考值(XlogP):-0.1
2.氢键供体数量:1
3.氢键受体数量:1
4.可旋转化学键数量:0
5.互变异构体数量:无
6.拓扑分子极性表面积20.2
7.重原子数量:3
8.表面电荷:0
9.复杂度:2.8
10.同位素原子数量:0
11.确定原子立构中心数量:0
12.不确定原子立构中心数量:0
13.确定化学键立构中心数量:0
14.不确定化学键立构中心数量:0
15.共价键单元数量:1
性质与稳定性
1.化学性质:乙醇是醇类的代表物质,化学性质如下所示。
① 生成金属衍生物乙醇与钠、钾等碱金属反应生成乙醇化物;低级醇容易发生此反应,有时有着火的危险
2C2H5OH + 2Na→2C2H5ONa + H2
高级醇反应较慢,特别是高级仲醇、叔醇反应速度小,不容易生成醇化物;铝、镁、钙、钡等金属与醇一起煮沸,也能生成醇化物。
② 生成酯醇与有机酸、无机酸反应时脱水生成酯,反应是可逆的
C2H5OH + RCOOH→RCOOC2H5 + H2O
此反应常用强酸、金属盐、离子交换树脂等作催化剂;甲醇的反应性大,C2~C5的伯醇反应速度大致相等;仲醇、叔醇的反应性小,而且叔醇在酸性介质中容易脱水生成烯烃,一般用间接的方法制备叔醇的酯;酰氯和酸酐与醇更易进行酯化反应。
③ 生成卤代烷乙醇与卤代氢、亚硫酰氯或卤化磷反应时,羟基被卤原子置换,生成卤代烷。
叔醇的反应速度快,仲醇、伯醇的反应速度依次降低;卤化氢以碘化氢快,氯化氢慢。
④ 脱水反应醇的脱水有分子间脱水和分子内脱水两种方式;分子间脱水生成醚,分子内脱水生成烯烃。反应按哪种方式进行取决于醇的结构和反应条件;一般高温有利于生成烯烃,低温有利于生成醚;叔醇易脱水成烯,难以得到醚;反应常在催化剂存在下进行,常用的催化剂有硫酸、磷酸、三氧化二铝、磷酸铝等。
⑤ 缩醛的生成乙醇在室温下与醛反应生成半缩醛,并放出热量。在酸性催化剂如HCl、H2SO4或CaCl2存在下,进一步与1mol醇反应生成缩醛。
⑥ 氧化反应伯醇氧化生成醛,醛再继续氧化成羧酸。仲醇氧化生成酮。叔醇难氧化,但在剧烈的条件下氧化生成碳原子数较叔醇少的产物。常用的氧化剂有重铬酸钠、硫酸或三氧化铬和冰乙酸。乙醇氧化生成乙醛或乙酸。
⑦ 脱氢反应伯醇或仲醇的蒸气在高温下通过脱氢催化剂如铜、银、镍或铜氧化铬时,则脱氢生成醛或酮。叔醇不能脱氢,只能脱水成烯烃。
⑧ 其他乙醇易与乙烯酮、环氧乙烷、异氰酸酯等反应性大的物质发生反应,分别生成乙酸酯、烷氧基醇和氨基甲酸乙酯;乙醇用漂白粉溶液氧化生成氯仿,用碘和氢氧化钾氧化生成碘仿;与不含亚硝酸的硝酸作用生成硝酸乙酯;与汞和过量的硝酸作用生成雷酸汞Hg(ONC)2;与氧化汞和氢氧化钠一起加热生成性物质C2Hg6O4H2。
2.与铬酸、次氯酸钙、过氧化氢、硝酸、硝酸铂、过氮酸盐及氧化剂反应剧烈,有发生的危险。易挥发,极易燃烧,火焰淡蓝色。蒸气与空气能形成混合物,极限4.3%~19.0%(vol)。具有吸湿性,与水形成共沸混合物。微毒。
3.稳定性[26] 稳定
4.禁配物[27] 强氧化剂、酸类、酸酐、碱金属、胺类
5.聚合危害[28] 不聚合
贮存方法
储存注意事项[29] 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过37℃。保持容器密封。应与氧化剂、酸类、碱金属、胺类等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。
合成方法
1. 发酵法:将富含淀粉的农产品如谷类、薯类等或野生植物果实经水洗、粉碎后,进行加压蒸煮,使淀粉糊化,再加入适量的水,冷却至60℃左右加入淀粉酶,使淀粉依次水解为麦芽糖和葡萄糖。然后加入酶母菌进行发酵制得乙醇。
2. 水合法:以乙烯和水为原料,通过加成反应制取。水合法分为间接水合法和直接水合法两种。间接水合法也称硫酸酯法,反应分两步进行。先把95-98%的硫酸和50-60%的乙烯按2:1(重量比)在塔式反应器吸收反应,60-80℃、0.78-1.96MPa条件下生成硫酸酯。
第二步是将硫酸酯在水解塔中,于80-100℃、0.2-0.29MPa压力下水解而得乙醇,同时生成副产物乙醚。烯直接与水反应生成乙醇。
直接水合法即一步法。由乙烯和水在磷酸催化剂存在下高温加压水合制得。本法流程简单、腐蚀性小,不需特殊钢材,副产乙醚量少,但要求乙烯纯度高,耗电量大。
无论用发酵法或乙烯水合法,制得的乙醇通常都是乙醇和水的共沸物,即浓度为95%的工业乙醇。为获得无水乙醇,可用下列方法进一步脱水。(1)用生石灰处理工业乙醇,使水转变成氢氧化钙,然后蒸出乙醇,再用金属钠干燥;这是老的方法。(2)共沸精馏脱水是目前工业上常用的方法。(3)用离子交换剂或分子筛脱水,然后再精馏。
3.在磷酸、硅藻土催化剂存在下,乙烯直接与水反应生成乙醇。
4.以工业乙醇为原料,经脱水处理,再在高效精馏塔内进行精馏,所得成品用微孔滤膜过滤即可。
5.选择含氧化钙高,铁、镁、硫杂质少的干燥生石灰,破碎成直径30mm 的小块,并去除老灰、石头及消石灰,然后与2倍质量的工业乙醇混合,加热使乙醇回流,约18h后,脱水结束。快速蒸出乙醇,经精馏,去除少量头液,即可得99.5%以上的试剂无水乙醇。也可将95%的乙醇通过孔径4.2×10-9的Na型分子筛进行脱水和脱甲醇,然后再精馏。该分子筛可于400~500℃高 温 下 烘3h,活 化 后,重 新使用。
6.以乙二醇醋酸钾溶液为萃取剂,与工业乙醇等量混合后,在高效精馏塔中精馏,可获得99.7%以上的无水乙醇。
7.用戊烷或石油醚作为共沸剂于0.3~0.7MPa下精馏,可获得99.9%以上的无水乙醇。
8.在带有氯化钙干燥管的容器中加入制得的无水乙醇和适量金属钙,使金属钙充分吸收水分后,蒸馏可得符合气相色谱标准的无水乙醇,乙醇含量大于99.95%。也可以工业乙醇为原料,经恒沸精馏、气相制备色谱分离和纯化而得符合气相色谱标准的无水乙醇。
9.纯制制乙醇时,可用金属镁或金属钠去除无水乙醇中的微量水份。含水量较大的乙醇不能直接用来制乙醇。用金属镁去除水份的方法:在装有回流冷凝器(顶端带氯化钙干燥管〕的1升园底烧瓶中,依次放入2一3克洁净的镁条,0.3克碘和30毫升99.5帕乙醇,在水浴上加热至碘粒完全消失(如果不起反应,可再加入几小粒碘)。继续加热,待镁完全溶解后,加入500毫升99.5%乙醇。回流1小时后,蒸出乙醇,弃去10毫升前馏分,其余收集于干燥瓶内贮存。此乙醇的纯度>99.95%。用金属钠去除水份的方法:装置同上。将500毫升99.5%乙醇和3.5克钠依次加入瓶中,待完全作用后,再加入几粒沸石和12.5克丁二酸乙醋或14克邻苯二甲酸二乙醋,回流2小时,然后蒸馏。弃去10毫升前馏分,其余收集于干燥的瓶内贮存。乙醇中微量水分测定:加入乙醇铝的苯溶液,若有大量白色沉淀生成,表明乙醇中水分含量超过0.05%。
用途
1.乙醇是重要的有机溶剂,广泛用于医药、涂料、卫生用品、化妆品、油脂等各个方法,占乙醇总耗量的50%左右。乙醇是重要的基本化工原料,用于制造乙醛、乙二烯、乙胺、乙酸乙酯、乙酸、氯乙烷等等,并衍生出医药、染料、涂料、香料、合成橡胶、洗涤剂、农药等产品的许多中间体,其制品多达300种以上,但目前乙醇作为化工产品中间体的用途正在逐步下降,许多产品例如乙醛、乙酸、乙基乙醇已不再采用乙醇作原料而用其他原料代替。75%的乙醇水溶液具有强杀菌能力,是常用的消毒剂。经过精制的乙醇也可用于制造饮料。与甲醇类似,乙醇可作能源使用。有的国家已开始单独用乙醇作汽车燃料或掺到汽油(10%以上)中使用以节约汽油。
2.用作黏合剂、硝基喷漆、清漆、化妆品、油墨、脱漆剂等的溶剂以及农药、医药、橡胶、塑料、人造纤维、洗涤剂等的制造原料,还可作防冻液、燃料、消毒剂等。在微电子工业中,用作脱水去污剂,可与去油剂配合使用。
3.用作分析试剂,如作溶剂。还用于制药工业。
4.用于电子工业,用作脱水去污剂及去油剂配料。5.用于溶解一些不溶于水的电镀有机添加剂,在分析化学中也用作六价铬的还原剂。
5.用于制酒工业、有机合成、消毒以及用作溶剂。[30]
联系我们:
邮箱:2519696869@qq.com
QQ: 2519696869
电话:18066853083
微信:18066853083
公司介绍:
西安齐岳生物科技有限公司是集化学科研和定制与一体的高科技化学公司。业务范围包括化学试剂和产品的研发、生产、销售等。涉及产品为通用试剂的分销、非通用试剂的定制与研发,涵盖生物科技、化学品、中间体和化工材料等领域。
主营产品:COF、MOF单体系列:三蝶烯衍生物、金刚烷衍生物、四苯甲烷衍生物、peg、上转换、石墨烯、光电材料、点击化学、凝集素、载玻片、蛋白质交联剂、脂质体、蛋白、多肽、氨基酸、糖化学等。